sealing seat interface on a spring-loaded pressure-relief valve.

(2) The test shall be performed when the unit contains a material having a total organic concentration representative of the range of concentrations for the materials expected to be managed in the unit. During the test, the cover and closure devices shall be secured in the closed

(3) The detection instrument shall meet the performance criteria of Method 21 of 40 CFR part 60, appendix A, except the instrument response factor criteria in section 3.1.2(a) of Method 21 shall be for the average composition of the organic constituents in the material placed in the unit, not for each individual organic constituent.

(4) The detection instrument shall be calibrated before use on each day of its use by the procedures specified in Method 21 of 40 CFR part 60, appendix

(5) Calibration gases shall be as follows:

(i) Zero air (less than 10 ppmv hydrocarbon in air); and

(ii) A mixture of methane or n-hexane in air at a concentration of approximately, but less than 10,000 ppmv.

(6) An owner or operator may choose to adjust or not adjust the detection instrument readings to account for the background organic concentration level. If an owner or operator chooses to adjust the instrument readings for the background level, the background level value must be determined according to the procedures in Method 21 of 40 CFR

part 60, appendix A.

(7) Each potential leak interface shall be checked by traversing the instrument probe around the potential leak interface as close to the interface as possible, as described in Method 21. In the case when the configuration of the cover or closure device prevents a complete traverse of the interface, all accessible portions of the interface shall be sampled. In the case when the configuration of the closure device prevents any sampling at the interface and the device is equipped with an enclosed extension or horn (e.g., some pressure relief devices), the instrument probe inlet shall be placed at approximately the center of the exhaust area to the atmosphere.

(8) An owner or operator must determine if a potential leak interface operates with no detectable emissions using the applicable procedure specified in paragraph (a)(8)(i) or (a)(8)(ii) of this

section.

(i) If an owner or operator chooses not to adjust the detection instrument

readings for the background organic concentration level, then the maximum organic concentration value measured by the detection instrument is compared directly to the applicable value for the potential leak interface as specified in paragraph (a)(9) of this section.

(ii) If an owner or operator chooses to adjust the detection instrument readings for the background organic concentration level, the value of the arithmetic difference between the maximum organic concentration value measured by the instrument and the background organic concentration value as determined in paragraph (a)(6) of this section is compared with the applicable value for the potential leak interface as specified in paragraph (a)(9) of this section.

- (9) A potential leak interface is determined to operate with no detectable emissions using the applicable criteria specified in paragraphs (a)(9)(i) and (a)(9)(ii) of this
- (i) For a potential leak interface other than a seal around a shaft that passes through a cover opening, the potential leak interface is determined to operate with no detectable organic emissions if the organic concentration value determined in paragraph (a)(8) is less than 500 ppmv.
- (ii) For a seal around a shaft that passes through a cover opening, the potential leak interface is determined to operate with no detectable organic emissions if the organic concentration value determined in paragraph (a)(8) is less than 10,000 ppmv.

(b) [Reserved]

28. Section 63.946 is amended by adding paragraph (d) and by revising paragraphs (a)(2) and (b)(1)(ii) to read as follows:

§ 63.946 Inspection and monitoring requirements.

(a) * *

(2) The owner or operator must perform an initial inspection following installation of the floating membrane cover. Thereafter, the owner or operator must perform the inspections at least once per calendar year except as provided for in paragraph (d) of this section.

(b) * * *

(1) * * *

(ii) The owner or operator must perform an initial inspection following installation of the cover. Thereafter, the owner or operator must perform the inspections at least once per calendar year except as provide for in paragraph (d) of this section.

- (d) Alternative inspection and monitoring interval. Following the initial inspection and monitoring of a piece of air pollution control equipment in accordance with the applicable provisions of this section, subsequent inspection and monitoring of the equipment may be performed at intervals longer than 1 year when an owner or operator determines that performing the required inspection or monitoring procedures would expose a worker to dangerous, hazardous, or otherwise unsafe conditions and the owner or operator complies with the requirements specified in paragraphs (d)(1) and (d)(2) of this section.
- (1) The owner or operator must prepare and maintain at the plant site written documentation identifying the specific air pollution control equipment designated as "unsafe to inspect and monitor." The documentation must include for each piece of air pollution control equipment designated as such a written explanation of the reasons why the equipment is unsafe to inspect or monitor using the applicable procedures under this section.
- (2) The owner or operator must develop and implement a written plan and schedule to inspect and monitor the air pollution control equipment using the applicable procedures specified in this section during times when a worker can safely access the air pollution control equipment. The required inspections and monitoring must be performed as frequently as practicable but do not need to be performed more frequently than the periodic schedule that would be otherwise applicable to the air pollution control equipment under the provisions of this section. A copy of the written plan and schedule must be maintained at the plant site.

Subpart RR—National Emission Standards for Individual Drain Systems

29. Section 63.961 is amended by adding in alphabetical order the definition of "Regulated-material" and by revising the definitions of "Individual drain system," "Sewer line" and "Waste management unit" to read as follows:

§63.961 Definitions.

Individual drain system means a stationary system used to convey regulated-material to a waste management unit or to discharge or disposal. The term includes hardpiping, all drains and junction boxes, together with their associated sewer lines and other junction boxes (e.g., manholes, sumps, and lift stations)

conveying regulated-material. For the purpose of this subpart, an individual drain system is not a drain and collection system that is designed and operated for the sole purpose of collecting rainfall runoff (e.g., stormwater sewer system) and is segregated from all other individual drain systems.

Regulated-material means the wastewater streams, residuals, and any other materials specified by the referencing subpart to be managed in accordance with the standards under this subpart.

Sewer line means a lateral, trunk line, branch line, or other conduit used to convey regulated-material to a downstream waste management unit. Sewer lines include pipes, grates, and trenches.

Waste management unit means the equipment, structure, or device used to convey, store, treat, or dispose of regulated-material. Examples of waste management units include: wastewater tanks, surface impoundments, individual drain systems, and biological wastewater treatment units. Examples of equipment that may be waste management units include containers, air flotation units, oil-water separators or organic-water separators, or organic removal devices such as decanters, strippers, or thin-film evaporation units. * * *

30. Section 63.962 is amended by revising paragraph (b) to read as follows:

§ 63.962 Standards.

(b) Owners and operators controlling air emissions from an individual drain system in accordance with paragraph (a)(1) of this section shall meet the following requirements:

- (1) The individual drain system shall be designed to segregate the organic vapors from regulated material managed in the controlled individual drain system from entering any other individual drain system that is not controlled for air emissions in accordance with the standards specified in this subpart.
- (2) Drain control requirements. Each drain shall be equipped with either a water seal or a closure device in accordance with the following requirements:
- (i) When a water seal is used, the water seal shall be designed such that either:
- (A) The outlet to the pipe discharging the regulated-material extends below the liquid surface in the water seal of the drain; or

- (B) A flexible shield or other device is installed which restricts wind motion across the open space between the outlet of the pipe discharging the regulated material and the drain.
- (ii) When a closure device is used (e.g., securing a cap or plug on a drain that is not receiving regulated-material), the closure device shall be designed to operate such that when the closure device is secured in the closed position there are no visible cracks, holes, gaps, or other open spaces in the closure device or between the perimeter of the drain opening and the closure device.

(3) Junction box control requirements. Each junction box shall be equipped with controls as follows:

- (i) The junction box shall be equipped with a closure device (e.g., manhole cover, access hatch) that is designed to operate such that when the closure device is secured in the closed position there are no visible cracks, holes, gaps, or other open spaces in the closure device or between the perimeter of the junction box opening and the closure
- (ii) If the junction box is vented, the junction box shall be vented in accordance with the following requirements:
- (A) The junction box shall be vented through a closed vent system to a control device except as provided for in paragraph (b)(3)(ii)(B) of this section. The closed vent system and control device shall be designed and operated in accordance in accordance with the standards specified in § 63.693 in subpart DD—National Emission Standards for Hazardous Air Pollutant Standards from Off-Site Waste and Recovery Operations.

(B) As an alternative to paragraph (b)(3)(ii)(A) of this section, the owner or operator may vent the junction box directly to the atmosphere when all of the following conditions are met:

- (1) The junction box is filled and emptied by gravity flow (i.e., there is no pump) or is operated with no more than slight fluctuations in the liquid level. Large changes in the size of the junction box vapor headspace created by using a pump to repeatedly empty and then refill the junction box do not meet this condition.
- (2) The vent pipe installed on the junction box shall be at least 90 centimeters in length and no greater than 10 centimeters in nominal inside diameter.
- (3) Water seals are installed at the liquid entrance(s) to or exit from the junction box to restrict ventilation in the individual drain system and between components in the individual drain system. The owner or operator shall

- demonstrate (e.g., by visual inspection or smoke test) upon request by the Administrator that the junction box water seal is properly designed and restricts ventilation.
- (4) Sewer line control requirements. Each sewer line shall not be open to the atmosphere and shall be covered or closed in a manner such that there are no visible cracks, holes, gaps, or other open spaces in the sewer line joints, seals, or other emission interfaces.
- (5) Operating requirements. The owner or operator shall operate the air emission controls required by paragraphs (b)(2) through (b)(4) of this section in accordance with the following requirements:
- (i) Each closure device shall be maintained in a closed position whenever regulated-material is in the individual drain system except when it is necessary to remove or open the closure device for sampling or removing material in the individual drain system, or for equipment inspection, maintenance, or repair.
- (ii) Each drain equipped with a water seal and open to the atmosphere shall be operated to ensure that the liquid in the water seal is maintained at the appropriate level. Examples of acceptable means for complying with this provision include but are not limited to using a flow-monitoring device indicating positive flow from a main to a branch water line supplying a trap; continuously dripping water into the trap using a hose; or regular visual observations.
- (iii) Each closed-vent system and the control device used to comply with paragraph (b)(3)(ii)(A) of this section shall be operated in accordance with the standards specified in 40 CFR 63.693.
- 31. Section 63.964 is amended by revising paragraph (b)(2) to read as follows:

§ 63.964 Inspection and monitoring requirements.

* (b) * * *

(2) Repair of a defect may be delayed beyond 15 calendar days if the owner or operator determines that repair of the defect requires emptying or temporary removal from service of the individual drain system and no alternative capacity is available at the facility site to accept the regulated-material normally managed in the individual drain system. In this case, the owner or operator shall repair the defect the next time the process or unit that is generating the regulated-material managed in the individual drain system stops operation. Repair of the defect shall be completed

before the process or unit resumes operation.

* * * * * *

32. Section 63.965 is amended by revising paragraph (b) to read as follows:

§ 63.965 Recordkeeping requirements.

(b) Owners and operators that use a closed-vent system and a control device in accordance with the provisions of § 63.962 of this subpart shall prepare and maintain the records required for the closed-vent system and control device in accordance with the requirements of § 63.693 in subpart DD—National Emission Standards for Hazardous Air Pollutant Standards from Off-Site Waste and Recovery Operations.

33. Section 63.966 is revised to read as follows:

§ 63.966 Reporting requirements.

Owners and operators that use a closed-vent system and a control device in accordance with the provisions of § 63.962 of this subpart shall prepare and submit to the Administrator the reports required for closed-vent systems and control devices in accordance with the requirements of § 63.693 in subpart DD—National Emission Standards for Hazardous Air Pollutant Standards from Off-Site Waste and Recovery Operations.

Subpart VV—National Emission Standards for Oil-Water Separators and Organic-Water Separators

34. Section 63.1041 is amended by revising the definition of "Safety device" to read as follows:

§63.1041 Definitions.

* * * * *

Safety device means a closure device such as a pressure relief valve, frangible disc, fusible plug, or any other type of device which functions to prevent physical damage or permanent deformation to equipment by venting gases or vapors during unsafe conditions resulting from an unplanned, accidental, or emergency event. For the purpose of this subpart, a safety device is not used for routine venting of gases or vapors from the vapor headspace underneath a cover such as during filling of the unit or to adjust the pressure in this vapor headspace in response to normal daily diurnal ambient temperature fluctuations. A safety device is designed to remain in a closed position during normal operations and open only when the internal pressure, or another relevant parameter, exceeds the device threshold setting applicable to the equipment as

determined by the owner or operator based on manufacturer recommendations, applicable regulations, fire protection and prevention codes, standard engineering codes and practices, or other requirements for the safe handling of flammable, combustible, explosive, reactive, or hazardous materials.

35. Section 63.1045 is added to read as follows:

§ 63.1045 Standards—Pressurized separator.

(a) This section applies to owners and operators controlling air emissions from an oil-water or organic-water separator that is pressurized and is operated as a closed-system.

(b) The pressurized separator must meet the following requirements.

(1) The separator must be designed not to vent to the atmosphere as a result of compression of the vapor headspace in the separator during operation of the separator at its design capacity.

(2) All separator openings must be equipped with closure devices designed to operate with no detectable organic emissions as determined using the procedure specified in § 63.1046(a) of this subpart.

(3) Whenever a regulated-material is in the separator, the separator must be operated as a closed system that does not vent to the atmosphere except under either of the following conditions as specified in paragraph (b)(3)(i) or (b)(3)(ii) of this section.

(i) At those times when opening of a safety device, as defined in § 63.1041 of this subpart, is required to avoid an unsafe condition.

(ii) At those times when purging of inerts from the separator is required and the purge stream is routed to a closed-vent system and control device designed and operated in accordance with the applicable requirements of § 63.693 in subpart DD—National Emission Standards for Hazardous Air Pollutant Standards from Off-Site Waste and Recovery Operations.

36. Section 63.1046 is amended by revising paragraphs (a) and (b)(3) to read as follows:

$\S 63.1046$ Test methods and procedures.

(a) Procedure for determining no detectable organic emissions for the purpose of complying with this subpart.

(1) The test shall be conducted in accordance with the procedures specified in Method 21 of 40 CFR part 60, appendix A. Each potential leak interface (i.e., a location where organic vapor leakage could occur) on the cover and associated closure devices shall be

checked. Potential leak interfaces that are associated with covers and closure devices include, but are not limited to: the interface of the cover and its foundation mounting; the periphery of any opening on the cover and its associated closure device; and the sealing seat interface on a spring-loaded pressure-relief valve.

(2) The test shall be performed when the unit contains a material having a total organic concentration representative of the range of concentrations for the materials expected to be managed in the unit. During the test, the cover and closure devices shall be secured in the closed position.

(3) The detection instrument shall meet the performance criteria of Method 21 of 40 CFR part 60, appendix A, except the instrument response factor criteria in section 3.1.2(a) of Method 21 shall be for the average composition of the organic constituents in the material placed in the unit, not for each individual organic constituent.

(4) The detection instrument shall be calibrated before use on each day of its use by the procedures specified in Method 21 of 40 CFR part 60, appendix

(5) Calibration gases shall be as follows:

(i) Zero air (less than 10 ppmv hydrocarbon in air); and

(ii) A mixture of methane or n-hexane in air at a concentration of approximately, but less than 10,000 ppmy.

(6) An owner or operator may choose to adjust or not adjust the detection instrument readings to account for the background organic concentration level. If an owner or operator chooses to adjust the instrument readings for the background level, the background level value must be determined according to the procedures in Method 21 of 40 CFR part 60, appendix A.

(7) Each potential leak interface shall be checked by traversing the instrument probe around the potential leak interface as close to the interface as possible, as described in Method 21. In the case when the configuration of the cover or closure device prevents a complete traverse of the interface, all accessible portions of the interface shall be sampled. In the case when the configuration of the closure device prevents any sampling at the interface and the device is equipped with an enclosed extension or horn (e.g., some pressure relief devices), the instrument probe inlet shall be placed at approximately the center of the exhaust area to the atmosphere.